Machine Learning: What it is and Why it Matters


What is Machine Learning?

Machine learning is a core sub-area of artificial intelligence; it enables computers to get into a mode of self-learning without being explicitly programmed. When exposed to new data, these computer programs are enabled to learn, grow, change, and develop by themselves.

SAS, a North Carolina-based analytics software developer, uses this definition: “Machine learning is a method of data analysis that automates analytical model building.” In other words, it allows computers to find insightful information without being programmed where to look for a particular piece of information; instead, it does this by using algorithms that iteratively learn from data.

While the concept of machine learning has been around for a long time, (an early and notable example: Alan Turing’s famous WWII Enigma Machine) the ability to apply complex mathematical calculations to big data automatically—iteratively and quickly—has been gaining momentum over the last several years.

So, put simply, the iterative aspect of machine learning is the ability to adapt to new data independently. This is possible as programs learn from previous computations and use “pattern recognitions” to produce reliable results.

Why Machine Learning?

To better understand the uses of machine learning, consider some of the instances where machine learning is applied: the self-driving Google car, cyber fraud detection, online recommendation engines—like friend suggestions on Facebook, Netflix showcasing the movies and shows you might like, and “more items to consider” and “get yourself a little something” on Amazon—are all examples of applied machine learning.

All these examples echo the vital role machine learning has begun to take in today’s data-rich world. Machines can aid in filtering useful pieces of information that help in major advancements, and we are already seeing how this technology is being implemented in a wide variety of industries.

With the constant evolution of the field, there has been a subsequent rise in the uses, demands, and importance of machine learning. Big data has become quite a buzzword in the last few years; that’s in part due to increased sophistication of machine learning, which helps analyze those big chunks of big data. Machine learning has also changed the way data extraction, and interpretation is done by involving automatic sets of generic methods that have replaced traditional statistical techniques.

Uses Of Machine Learning

Earlier in this article, we mentioned some applications of machine learning. To understand the concept of machine learning better, let’s consider some more examples: web search results, real-time ads on web pages and mobile devices, email spam filtering, network intrusion detection, and pattern and image recognition. All these are by-products of applying machine learning to analyze huge volumes of data.

Traditionally, data analysis was always being characterized by trial and error, an approach that becomes impossible when data sets are large and heterogeneous. Machine learning comes as the solution to all this chaos by proposing clever alternatives to analyzing huge volumes of data. By developing fast and efficient algorithms and data-driven models for real-time processing of data, machine learning is able to produce accurate results and analysis.

Source: Simplilearn
Author: Priyadharshini

[ot-video type=”youtube” url=””]


Subscribe to our mailing list